

THE HIVE PRODUCT PORTFOLIO FEATURING SOFT TITANIUM TECHNOLOGY

HIVE STANDALONE CERVICAL SYSTEM

A BETTER FUSION SOLUTION

Hive Standalone Cervical System includes a full range of implant designs and sizes to accommodate vertebral anatomy, lordosis and surgical technique. The implants incorporate a Soft Titanium lattice structure to deliver maximum durability while optimizing visualization.

THE HIVE SOFT TITANIUM TECHNOLOGY

BONE ONGROWTH

- Proprietary NanoHive® acid etch surface treatment drives increased osteoblast recruitment, as compared to untreated surfaces [1]
- · Rapid bone attachment seen at endplates and throughout the lattice [2]
- Macro, micro and nano-scale features on all surfaces, as well as each member of the internal cell structure, are designed to support osteoblast adhesion and optimize the environment for bony on-growth [1,3]

ZERO PROFILE AND PLATED CAGE OPTIONS

- · Zero Profile cage designed to minimize contact with nearby vessels and nerves
- · Adjustable anterior plate, to allow for plate rotation and countersinking of the interbody into the disc space

BONE SCREWS

- · Self drilling/self tapping
- Dia: 3.5 & 4.0 mm
- Length: 12 18mm
- Variable insertion angles

WIDE RANGE OF SIZES

- 15mm wide x 12mm deep
- 18mm wide x 14mm deep
- Height: 6 12mm (5mm selective footprints)
- Lordosis: 6°, 12°

IMPROVED VISUALIZATION

- · Low density lattice designed to allow visualization of endplate fusion and bone growth through the cage
- · Reduced CT/MRI scatter and interference

REDUCED IMPLANT STIFFNESS

- Patented rhombic dodecahedron lattice with independent endplates reduces the need for stress shielding design features found in other implants
- Soft Titanium lattice allows bone cells growing within the implant walls to experience natural loads, significantly increasing bone strength per Wolff's law

INTUITIVE INSTRUMENTATION

 Streamlined instrumentation, including easy to use Angled Driver, accommodates a variety of anatomical conditions and approaches.

[1] N. J. Bassous, C. L. Jones and T. J. Webster, 3-D printed Ti-6Al-4V scaffolds for supporting osteoblast and restricting bacterial functions without using drugs: Predictive equations and experiments, Acta Biomaterialia 96 (2019) 662–673, https://doi.org/10.1016/j.actbio.2019.06.055, [2] CL Jones, D Bichara, J Toy, J Tinley. (2018) "Bone In Growth with 3D-Printed Soft Titanium® Scaffold." [White Paper], NanoHive Medical, LLC.
[3] Ejiofor J., et al, Bone Cell Adhesion on Titanium Implants with Nanoscale Surface Features.

International Journal of Powder Metallurgy, 40(2), 43-53.

