

THE ONLY BONE GRAFT POWERED BY

P15TM | osteogenic cell binding peptide

VAC Pack Appendix

*Class III Drug-Device Combination Product
Approved for Use in the Cervical Spine with
Published Level 1 Human IDE Study Data*

Created for Value Analysis Committee

CERAPEDICS
Enhancing the Science of Bone Repair

TABLE OF CONTENTS

PAGE 3 **FDA Letter for PMA P140019**
Sample Excerpt
[Download Link](#)

PAGE 4 **Instructions for Use**
Sample Excerpt
[Download Link](#)

PAGE 5 **Published Clinical Studies**
• **Randomized Single-Blinded FDA Study**
Efficacy of i-Factor Bone Graft versus Autograft in Anterior Cervical Discectomy and Fusion
Published in **Spine**
[Download Link](#)

• **2-Year Follow-up**
i-Factor™ Bone Graft vs Autograft in Anterior Cervical Discectomy and Fusion
Published in **Neurosurgery Journal**
[Download Link](#)

PAGE 6 **The Burden of Proof**
Sample Excerpt
[Download Link](#)

PAGE 7 **Material Safety Data Sheet i-FACTOR Bone Graft**
Sample Excerpt
[Download Link](#)

PAGE 8 **Supporting Documents**
• Cerapedics i-FACTOR Manufacturing Video [Download Link](#)
• FDA Regulatory Pathways & Evidence Requirements Sell Sheet [Download Link](#)
• ISASS Guidelines [Download Link](#)
• i-FACTOR Story Brochure [Download Link](#)

PAGE 9 **Supporting Documents** continued
• i-FACTOR vs. BMP-2 (Infuse™) Brochure [Download Link](#)
• i-FACTOR vs. Demineralized Bone Matrix Brochure [Download Link](#)
• i-FACTOR vs. Cellular Based Allografts Brochure [Download Link](#)
• The Reality of ACDF Fusion Rates Sell Sheet [Download Link](#)

1 Pivotal IDE study that led to PMA approval for use in spine.

2 i-FACTOR Bone Graft was evaluated in a 319-patient, prospective, randomized, controlled, multi-center clinical trial assessing its safety and efficacy compared to standard-of-care (autograft).

FDA LETTER FOR PMA P140019

DEPARTMENT OF HEALTH & HUMAN SERVICES

Public Health Service

Food and Drug Administration
10903 New Hampshire Avenue
Document Control Center – WO66-G609
Silver Spring, MD 20993-0002

Cerapedics, Incorporated
Mr. Roger N. White
Clinical and Regulatory Affairs
11025 Dover Street Suite 1600
Westminster, Colorado 80021

Re: P140019
i-FACTOR Peptide Enhanced Bone Graft
Filed: August 27, 2014
Amended: February 13, May 20, and June 9, 2015
Procode: NOX

Dear Mr. White:

The Center for Devices and Radiological Health (CDRH) of the Food and Drug Administration (FDA) has completed its review of your premarket approval application (PMA) for the i-FACTOR Peptide Enhanced Bone Graft. This combination product is indicated for use in skeletally mature patients for reconstruction of a degenerated cervical disc at one level from C3-C4 to C6-C7 following single-level discectomy for intractable radiculopathy (arm pain and/or a neurological deficit), with or without neck pain, or myelopathy due to a single-level abnormality localized to the disc space, and corresponding to at least one of the following conditions confirmed by radiographic imaging (CT, MRI, X-rays): herniated nucleus pulposus, spondylosis (defined by the presence of osteophytes), and/or visible loss of disc height as compared to adjacent levels, after failure of at least 6 weeks of conservative treatment. i-FACTOR Peptide Enhanced Bone Graft P-15 Putty must be used inside an allograft bone ring and with supplemental anterior plate fixation. We are pleased to inform you that the PMA is approved. You may begin commercial distribution of the device in accordance with the conditions of approval described below.

The sale and distribution of this device are restricted to prescription use in accordance with 21 CFR 801.109 and under section 515(d)(1)(B)(ii) of the Federal Food, Drug, and Cosmetic Act (the act). The device is further restricted under section 515(d)(1)(B)(ii) of the act insofar as the labeling must specify the specific training or experience practitioners need in order to use the device. FDA has determined that these restrictions on sale and distribution are necessary to provide reasonable assurance of the safety and effectiveness of the device. Your device is therefore a restricted device subject to the requirements in sections 502(q) and (r) of the act, in addition to the many other FDA requirements governing the manufacture, distribution, and marketing of devices.

Expiration dating for this device has been established and approved at 3 years. This is to advise you that the protocol you used to establish this expiration dating is considered an approved protocol for the purpose of extending the expiration dating as provided by 21 CFR 814.39(a)(7).

[Click here to view and/or download the complete FDA Letter for PMA P140019](#)
or type cerapedics.com/IF_FDAapproval into your browser.

INSTRUCTIONS FOR USE

CERAPEDICS
Enhancing the Science of Bone Repair

INSTRUCTIONS FOR USE

CAUTION: Federal (United States) law restricts this device to sale by or on the order of a physician.

DEVICE DESCRIPTION:

i-FACTOR® Peptide Enhanced Bone Graft (also referred to as i-FACTOR® Bone Graft or i-FACTOR® Putty) is a composite bone graft material consisting of multiple components - a synthetic peptide (P-15) adsorbed onto calcium phosphate particles, which are suspended in a hydrogel carrier. The i-FACTOR Peptide Enhanced Bone Graft must be used in combination with an allograft ring and a metallic anterior cervical plate.

i-FACTOR Peptide Enhanced Bone Graft peptide component

The synthetic peptide is a short chain peptide consisting of 15 amino acids that mimics the sequence of amino acids found in residues 766-780 of the $\alpha 1$ chain of Type I collagen according to the following sequence:

Gly-Thr-Pro-Gly-Pro-Gln-Gly-Ile-Ala-Gly-Gln-Arg-Gly-Val-Val

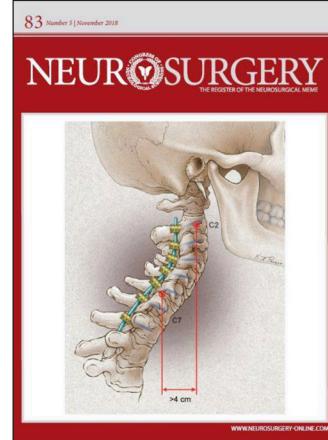
It is intended to facilitate attachment of osteogenic cells to the granule component. None of the amino acids used in synthesizing the peptide are animal-derived.

Calcium phosphate granule component

The calcium phosphate granules, also known as anorganic bone mineral (ABM), provide a scaffolding and source of calcium for new bone growth. These granules consist of hydroxyapatite that is derived from thermally treated ($> 1000^{\circ} \text{C}$) bovine bone. The thermal processing removes all of the organic material from the source bone. The potential for disease transmission from this component is mitigated by the thermal processing, as well as use of a closed, documented US herd. The granules are irregularly-shaped with a particle diameter range of 250-425 μm and are naturally porous.

Hydrogel component

The hydrogel component consists of plant-derived sodium carboxymethylcellulose (NaCMC) in combination with glycerin and water.


The various components are combined in a proportion that delivers the desired handling characteristics and allows the material to be maintained at the surgical site. Prior to being combined with the hydrogel component, the peptide component is adsorbed onto the calcium phosphate granules component. The final composition of i-FACTOR Peptide Enhanced Bone Graft is shown in the following table:

(continued in link below)

[Click here to view and/or download the complete Current IFU](#)

or type cerapedics.com/ifu-700 into your browser.

PUBLISHED CLINICAL STUDIES (1 & 2 YEARS)

Spine

SPINE Volume 41, Number 13, pp 1075-1083
© 2016 Wolters Kluwer Health, Inc. All rights reserved

RANDOMIZED TRIAL

Efficacy of i-Factor Bone Graft versus Autograft in Anterior Cervical Discectomy and Fusion

Results of the Prospective, Randomized, Single-blinded Food and Drug Administration Investigational Device Exemption Study

Paul M. Arnold, MD,¹ Rick C. Sasso, MD,¹ Michael E. Jansen, MD,² Michael G. Fehlings, MD, PhD,³ Joseph D. Smuckler, MD,⁴ Alexander R. Vaccaro, MD, PhD,⁵ Robert F. Heany, MD,⁶ Ashvin I. Patel, MD,⁷ Benoit Goulet, MD,⁸ Iain H. Kalfas, MD,⁹ and Branko Kopjar, MD, PhD¹⁰

Study Design. A prospective, randomized, controlled, parallel, single-blinded noninferiority multicenter pivotal FDA IDE trial.

Objective. The objective of this study was to investigate efficacy and safety of i-Factor Bone Graft (i-Factor) compared with local autograft in single-level anterior cervical discectomy and fusion (ACDF) for cervical radiculopathy.

Summary of Background Data. i-Factor is a composite bone substitute material consisting of the P-15 synthetic collagen fragment adsorbed onto anorganic bone mineral and suspended in an inert biocompatible hydrogel carrier. P-15 has demonstrated bone healing efficacy in dental, orthopedic, and nonhuman animal applications.

Methods. Patients randomly received either autograft (N=154) or i-Factor (N=165) in a cortical ring allograft. Study success was defined as noninferiority in fusion, Neck Disability Index

(NDI), and Neurological Success endpoints, and similar adverse events profile at 12 months.

Results. At 12 months (follow-up rate 87%), both i-Factor and autograft subjects demonstrated a high fusion rate (80.0% and 85.82%, respectively; noninferiority $P=0.004$), significant improvements in NDI (28.75 and 27.40, respectively; noninferiority $P<0.0001$), and high Neurological Success rate (93.71% and 93.01%, respectively; noninferiority $P=0.0001$). There was no difference in the rate of adverse events (83.64% and 82.47% in the i-Factor and autograft groups, respectively, $P=0.8814$). Nonoperative success was 88.7% and 89.6% in NDI, and surgical success and Success rate was higher in i-Factor subjects than in autograft subjects (67.75% and 56.94%, respectively, $P=0.0382$). Improvements in VAS pain and SF-36[®] scores were clinically relevant and similar between the groups. A high proportion of patients reported good or excellent Odom outcomes (81.4% in both groups).

Conclusion. i-Factor has met all four FDA mandated noninferiority endpoints. i-Factor has demonstrated safety and efficacy in single-level ACDF for cervical radiculopathy. i-Factor and autograft groups demonstrated significant postoperative improvement and high fusion rates.

Key words: anterior cervical discectomy and fusion, arthrodesis, cervical radiculopathy, cervical spine, degenerative disc disease, fusion, i-Factor bone graft, P-15 small peptide.

Level of Evidence: I

Spine 2016;41:1075-1083

From the ¹University of Kansas Medical Center, Kansas City, KS; ²Indiana Spine Center, Carmel, IN; ³Spine University, Toronto, ON, Canada; ⁴University of Toronto Spine Program and Toronto Western Hospital, Toronto, Ontario, Canada; ⁵Rothman Institute at Jefferson, Philadelphia, PA; ⁶Rutgers New Jersey Medical School, Newark, NJ; ⁷Kennedy-White Orthopedic Institute, Inc., New York, NY; ⁸Montreal Neurological Institute, Montreal, Quebec, Canada; ⁹Cleveland Clinic, Cleveland, OH; and ¹⁰University of Washington, Seattle, WA.

Address reprint requests to Paul M. Arnold, MD, 3500 LaRosa Drive, Suite 150, Kansas City, MO 64111. E-mail: paularnold@kumc.edu

The device(s)/drug(s) that is/are the subject of this manuscript is/are being evaluated as part of an ongoing FDA-approved investigational protocol (IDE) for the investigation of the safety and efficacy of i-Factor Bone Graft in the application described in this investigation.

Grapicx, Inc. provided research funding to investigator sites to conduct this Food and Drug Administration (FDA)-approved investigational Device Exemption trial. Funding was provided to the investigator and the authors of this manuscript. No funding was received for other purposes.

Relevant financial activity outside the submitted work: grants, expert testimony, stocks, and consultancy.

Address reprint requests to Paul M. Arnold, MD, University of Kansas Medical Center, Department of Neurosurgery, Mail Stop 3201, 3901 Rainbow Blvd., Kansas City, KS 66160; E-mail: paularnold@kumc.edu

DOI: 10.1097/BRS.0000000000001466

Spine

Anterior cervical discectomy and fusion (ACDF) is a standard treatment for symptomatic cervical radiculopathy that does not respond to conservative care.¹⁻³ ACDF has traditionally been performed using iliac crest autograft as the preferred interbody graft material. Although efficacious with respect to fusion, iliac crest autograft harvest is associated with significant morbidity,⁴⁻⁶ which has led to the increased use of local autograft bone or alternatives such as allograft bone, synthetic grafts, demineralized bone, ceramics, calcium phosphates, and

www.spinejournal.com 1075

Randomized Single-Blinded FDA Study

Efficacy of i-Factor Bone Graft versus Autograft in Anterior Cervical Discectomy and Fusion

Published in **Spine**

[Click here to view and/or download](#)
or type cerapedics.com/IF_1yearstudy
into your browser.

2-Year Follow-up

i-Factor™ Bone Graft vs Autograft in Anterior Cervical Discectomy and Fusion

Published in **Neurosurgery Journal**

[Click here to view and/or download](#)
or type cerapedics.com/IF_2yearstudy
into your browser.

THE BURDEN OF PROOF

MECHANISM OF ACTION

THE SYNTHETIC P-15 PEPTIDE IN i-FACTOR PEPTIDE-ENHANCED BONE GRAFT RESULTS IN HIGHER EXPRESSION OF ALKALINE PHOSPHATASE (AN EARLY MARKER OF CELL PROLIFERATION) COMPARED TO OTHER BONE GRAFT SUBSTITUTES.

- Kübler A, Neugebauer J, Oh JH, Scheer M, Zöller JE. Growth and proliferation of human osteoblasts on different bone graft substitutes: an in vitro study. *Implant Dentistry*. 2004 June; 13(2):171-9.

THE SYNTHETIC P-15 PEPTIDE IN i-FACTOR PEPTIDE-ENHANCED BONE GRAFT ENHANCES BONE MARROW STROMAL CELL ATTACHMENT, SPREADING AND ALIGNMENT, AND THE PROVISION OF BIOMIMETIC MICROENVIRONMENTS FOR OSTEOBLASTS LEADING TO BONE FORMATION.

- Qian JJ, Bhatnagar RS. Enhanced cell attachment to anorganic bone mineral in the presence of a synthetic peptide related to collagen. *J Biomed Mater Res*. 1996 Aug;31(4):545-54.
- Turhani D, Weissenböck M, Watzinger E, Yerit K, Cvikel B, Ewers R, Thurnher D. In vitro study of adherent mandibular osteoblast-like cells on carrier materials. *Int J Oral Maxillofac Surg*. 2005 Jul;34(5):543-50. Epub 2005 Jan 26.
- Turhani D, Item C, Thurnher D, Kapral D, Cvikel B, Weissenböck M, Yerit K, Erovic B, Moser D, Watzinger F, Ewers R, Lauer G. [Evidence of osteocalcin expression in osteoblast cells of mandibular origin growing on biomaterials with RT-PCR and SDS-PAGE/Western blotting]. *Mund Kiefer Gesichtschir*. 2003 Sep;7(5):294-300. Epub 2003 Sep 12. German.
- Bhatnagar RS, Qian JJ, Wedrychowska A, Sadeghi M, Wu YM, Smith N. Design of biomimetic habitats for tissue engineering with P-15, a synthetic peptide analogue of collagen. *Tissue Eng*. 1999 Feb;5(1):53-65.
- Yuan K, Huang JS, Hsu CW, Hung IJ. A mineralization-associated membrane protein plays a role in the biological functions of the peptide-coated bovine hydroxyapatite. *J Periodontal Res*. 2007 Oct;42(5):420-8.
- Mittal A, Negi P, Garkhal K, Verma S, Kumar N. Integration of porosity and bio-functionalization to form a 3D scaffold: cell culture studies and in vitro degradation. *Biomed Mater*. 2010 Aug;5(4):045001.
- Liu Q, Limthongkul W, Sidhu G, Zhang J, Vaccaro A, Shenck R, Hickok N, Shapirol, Freeman T. Covalent attachment of P15 peptide to titanium surfaces enhances cell attachment, spreading, and osteogenic gene expression. *J Orthop Res*. 2012 Oct;30(10):1626-33.
- Pereira KKY, Oliveira FS, Alves OC, Novaes Jr AB, Nanci A, Rosa AL, De Oliveira PT. Development of the osteogenic phenotype in vitro on titanium surface microtopography functionalized with a type I collagen-derived synthetic peptide. *Bone* (2012) 50 Suppl. 1 (S68). May 2012.

THE SYNTHETIC P-15 PEPTIDE IN i-FACTOR PEPTIDE-ENHANCED BONE GRAFT CAUSES STEM CELL DIFFERENTIATION TO Viable OSTEOGENIC CELLS.

(continued in link below)

[Click here to view and/or download the complete Burden of Proof document](#)
[or type cerapedics.com/IF_burdenofproof into your browser.](#)

MATERIAL SAFETY DATASHEET

Cerapedics, Inc.
11025 Dover St., Suite 1600, Westminster, Colorado 80021

MATERIAL SAFETY DATA SHEET
Complies with OSHA's Hazard Communication Standard
29 CFR 1910.1200

Material Identity: **i≡FACTOR™ Putty**

SECTION I – Manufacturer Information

Manufacturers Name: Cerapedics, Inc.	Emergency/Information Telephone Number: (303) 974-6275
Address: 11025 Dover St., Suite 1600, Westminster, CO 80021	Date MSDS was Prepared: October 20, 2009

SECTION II – Ingredients and Hazards

	%	Hazard Data
Hydroxylapatite $Ca_{10}(OH)_2(PO_4)_6$	51.94	No TLV Est.
P-15 Peptide ($C_{59}H_{100}N_{20}O_{19}ACOH$)	0.3×10^{-6}	No TLV Est.
Sodium Carboxymethylcellulose R OCH_2COONa	1.51	No TLV Est.
Glycerol $C_3H_5(OH)_3$	6.98	No TLV Est.
Water for Injection H_2O	39.57	No TLV Est.

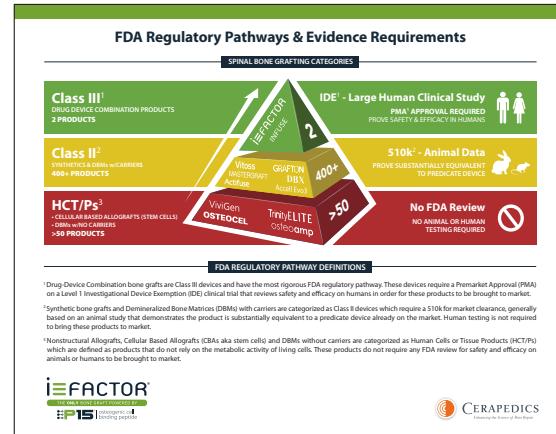
SECTION III - Physical/Chemical Characteristics

Chemical Formula: See Section II	Specific Gravity (H20 = 1): Particles: 3.14 g/cc Gel Carrier: 1.0 g/cc, Overall: 1.55 g/cc
Vapor Pressure (mm Mg.): No data	Melting Point: Particles: 1670 °C
Vapor Density (AIR = 1): No data	Evaporation Rate: No data
Solubility in Water: Particles Practically insoluble. Gel Carrier is water-soluble.	Boiling Point: No data
Appearance and Odor: White solid granules suspended in a water based gel carrier / no odor.	

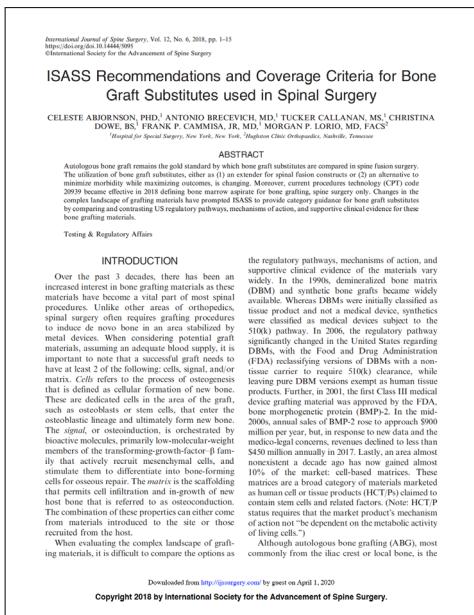
SECTION IV - Fire and Explosion Hazard Data

Flash Point (method used): No data	Flammable Limits: No data
Extinguishing Methods: No data	
Special Fire Fighting Procedures: No special fire fighting procedures needed.	
Unusual Fire and Explosion Hazards: No data	

(continued in link below)


[Click here to view and/or download the complete Material Safety Data Sheet](#)
or type cerapedics.com/IF_MSDS into your browser.

SUPPORTING DOCUMENTS

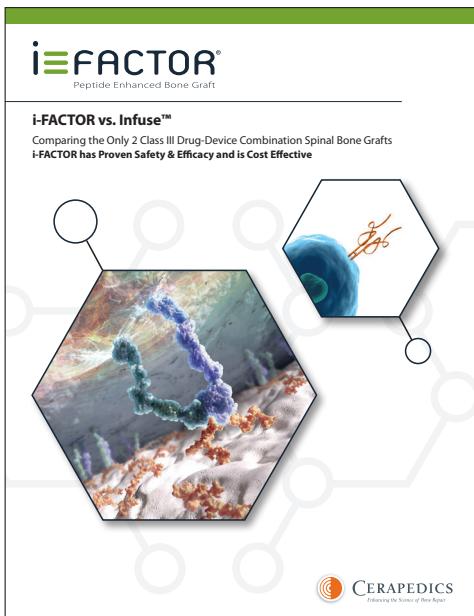

Cerapedics i-FACTOR Manufacturing Video "How is i-FACTOR Manufactured?"

[Click here to view the video](http://cerapedics.com/tour)
cerapedics.com/tour

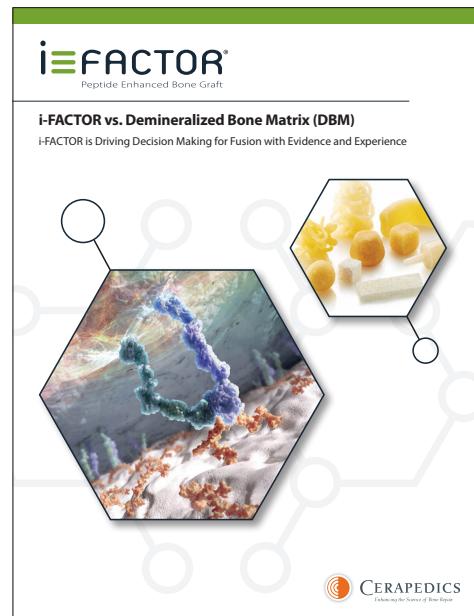
FDA Regulatory Pathways & Evidence Requirements Sell Sheet

[Click here to view and/or download](http://cerapedics.com/IF_regpathways)
cerapedics.com/IF_regpathways

ISASS Recommendations and Coverage Criteria for Bone Graft Substitutes used in Spinal Surgery


[Click here to view and/or download](http://cerapedics.com/IF_ISASS)
cerapedics.com/IF_ISASS

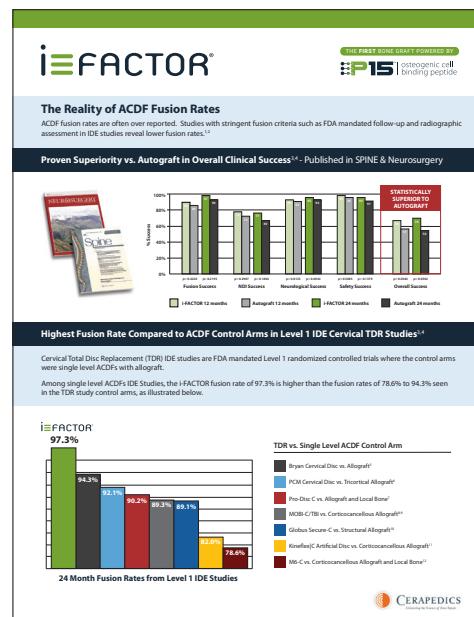
i-FACTOR Story Brochure


[Click here to view and/or download](http://cerapedics.com/IF_storybrochure)
cerapedics.com/IF_storybrochure

SUPPORTING DOCUMENTS CONTINUED

i-FACTOR vs. BMP-2 (Infuse™)
Brochure

[Click here to view and/or download
cerapedics.com/IF_vs_BMP](http://cerapedics.com/IF_vs_BMP)


i-FACTOR vs. Demineralized Bone
Matrix Brochure

[Click here to view and/or download
cerapedics.com/IF_vs_DBM](http://cerapedics.com/IF_vs_DBM)

i-FACTOR vs. Cellular Based Allografts
Brochure

[Click here to view and/or download
cerapedics.com/IF_vs_CBA](http://cerapedics.com/IF_vs_CBA)

The Reality of ACDF Fusion Rates
Sell Sheet

[Click here to view and/or download
cerapedics.com/IF_realityofACDF](http://cerapedics.com/IF_realityofACDF)